
OPTIMUS: Discrete Event Simulator for
Vehicle-to-Building Charging Optimization

Jose Paolo Talusan∗, Rishav Sen∗, Ava Pettet†, Aaron Kandel†,
Yoshinori Suzue†, Liam Pedersen†, Ayan Mukhopadhyay∗, Abhishek Dubey∗

∗Vanderbilt University
†Nissan Advanced Technology Center - Silicon Valley

Abstract—The increasing popularity of electronic vehicles has
spurred a demand for EV charging infrastructure. In the United
States alone, over 160,000 public and private charging ports have
been installed. This has stoked fear of potential grid issues in the
future. Meanwhile, companies, specifically building owners are
also seeing the opportunity to leverage EV batteries as energy
stores to serve as buffers against the electric grid. The main
idea is to influence and control charging behavior to provide
a certain level of energy resiliency and demand responsiveness
to the building from grid events while ensuring that they
meet the demands of EV users. However, managing and co-
optimizing energy requirements of EVs and cost-saving measures
of building owners is a difficult task. First, user behavior and
grid uncertainty contribute greatly to the potential effectiveness
of different policies. Second, different charger configurations
can have drastically different effects on the cost. Therefore,
we propose a complete end-to-end discrete event simulator for
vehicle-to-building charging optimization. This software is aimed
at building owners and EV manufacturers such as Nissan,
looking to deploy their charging stations with state-of-the-art
optimization algorithms. We provide a complete solution that
allows the owners to train, evaluate, introduce uncertainty,
and benchmark policies on their datasets. Lastly, we discuss
the potential for extending our work with other vehicle-to-grid
deployments.

Index Terms—Simulation, Optimization, EV charging

I. INTRODUCTION

The increasing ubiquity of electronic vehicles (EVs) has
increased the demand for EV charging stations. As of 2023,
there are more than 140,000 public and 20,000 private charg-
ing ports across the USA[1]. EV asset managers such as
fleet, charging asset managers, and EV manufacturers are now
seeing the game-changing opportunity to leverage EVs as
batteries which could be effectively used as buffers against
the electric grid. This is also true for building owners with
many EV chargers. They have begun offering charging at their
parking lots and are now using this opportunity to avoid buying
power from the grid during peak time-of-use periods, instead
discharging from parked cars. The opposite is true during off-
peak time-of-use periods when prices are low, where building
owners can afford to charge all cars with minimal costs.

This transaction between EVs and smart building owners
is defined as Vehicle-to-Building (V2B). The key idea behind
V2B is the management and co-optimization of energy and
cost requirements of EVs and smart buildings [2]. When
done correctly, EVs can provide a certain level of energy re-
siliency and demand-responsiveness for buildings during high

grid peak rates and sudden grid events [3]. Simultaneously,
buildings can offer a level of guarantee to EVs that they
will be charged by the time they leave. This is possible by
actively controlling charger actions and behavior in response
to stimulus from the grid, building, and requests from EV
owners. However, effectively realizing this is non-trivial due
to several endogenous and exogenous variables.

The ability to optimize the two objectives of cost and energy
hinges on the configuration of chargers that would be used
and the actions they take. EV chargers come in two particular
types, unidirectional and bidirectional. While both types of
chargers can store energy in the EV, only bidirectional chargers
can harness this energy by discharging the vehicle The number
and types of deployed chargers have a massive effect on the
possible actions that a smart building can take to meet its ob-
jectives. Aside from these decisions, the majority of challenges
in optimizing objectives lie in the inherent uncertainty present
when dealing with multiple agents. The transient behavior
of EVs makes it difficult to completely plan and optimize
actions for the entire billing period. Charging EVs while
avoiding adverse effects on the managers and the grid, requires
new techniques and algorithms. The development of these
techniques has attracted attention in the research community.
However, the efforts required to make these algorithms into
reality require addressing the complexities of practical systems
that are often overlooked in theoretical models. Creating an
impact in practice requires access to real-world data, the ability
to generate new data, introduce uncertainty, and integrate it
with existing systems.

In this work, we tackle the identified gaps by creating
a Python-based, event-driven simulation platform, which we
developed in collaboration with our industry partner, Nissan.
The complete framework, called OPTIMUS, seamlessly unites
EV charging policies, physics-based charging profiles, and grid
events to facilitate easy, minimal-change policy development
and testing. The platform consists of several reusable and
configurable components, adaptable to various datasets and
deployment scenarios. Noteworthy features include modules
for data generation, policy execution, and policy training. Ad-
ditionally, the platform offers a web application with multiple
interfaces, specially designed to streamline testing processes
for building owners.

The summary of our contributions is as follows: (1) We
have developed OPTIMUS, a platform that utilizes real-world

data to train both learning and generative models to allow
us to create realistic input data for testing policies. (2) Our
framework includes several prebuilt policies for generating
charging actions, which users can easily extend to meet their
specific needs. Finally, (3) we provide a comprehensive end-to-
end solution designed for policy evaluation on scenarios with
uncertainty reflecting real-world usage, all within a ready-to-
use web application.

II. EXISTING SIMULATORS

Open-source tools and simulators are often used in smart
grid research. GridLAB-D [4] is widely used to model power
systems and flow computations accurately. Simulators specific
to EV charging often use tools such as GridLAB-D to ensure
accurate representations of their EV batteries and grid levels.
V2G-Sim, developed at LBNL [5], is a mature simulation
environment that has been used to meet drivers’ mobility needs
in the context of demand response and level-1 charging. On
the other hand, Sarieddine et al. developed a hardware-in-the-
loop (HIL) real-time simulator, while accurate, is costly and
requires existing infrastructure [6]. ACN-Sim [7] is designed
specifically around evaluating online algorithms that adapt to
changes in the system over time while considering infras-
tructure constraints within a charging facility. EV-EcoSim [8]
is a more recent co-simulation platform that uses several
modules such as electric vehicle charging, battery systems, and
control strategies, to perform cost quantification and analyze
the impacts of EV charging on the grid. Both ACN-Sim and
EV-EcoSim have been developed as modular architectures that
model physical systems as closely as possible while making
it easier to extend for new use cases.

While V2G-Sim allows for precomputed charging sched-
ules and simple control strategies, it cannot evaluate online
algorithms and adapt to changes over time. Both ACN-Sim
and EV-EcoSim address this issue and can handle changes
to the state over time. However, EV-EcoSim is not designed
with ease of use in mind, requiring more knowledge to
configure on own data. ACN-Sim allows researchers and users
to share and reproduce experiments through Jupyter Notebooks
hosted on Google Colab. However, it lacks the presence of a
complete dashboard that allows users to generate data, select
algorithms, and export and share results. We also allow users
to inject uncertainty into the simulations through API requests.
Additionally, we design OPTIMUS to interface with mobile
devices and existing chargers to mimic sudden out-of-input
distribution EV arrivals and departures. This is absent in all
prior work.

III. PROBLEM STATEMENT

In this section, we define the costs and issues related to EV
charging. Then, we define the problem faced by Nissan as the
building owner and as an EV manufacturer.

A. EV Chargers

The building owner, Nissan Advanced Technology Center
Silicon Valley (NATC-SV), uses two types of chargers to

charge their Nissan LEAF EVs, unidirectional and bidirec-
tional. Uncontrolled unidirectional chargers are more common
and are typically limited to charging EVs as soon as they
plug in and only stop when the EV battery is full. Others
can be turned on or off, essentially changing between 0 and
their maximum charging rate. This behavior is similar to any
traditional battery charger. However, it is not the most cost-
effective solution for avoiding high peak demand rates. On the
other hand, bidirectional chargers can charge EVs and also
discharge their batteries to power external loads. Bidirectional
chargers may change their charging and discharging rates over
time to match EV requirements. The desired behavior is still
being investigated for bidirectional chargers, thus the need for
a simulator.

B. Uncertainty in the Environment

Cars arriving and departing from the parking lot follow
a certain distribution that can be influenced by weather,
day of the week, and month of the year. However, within
these distributions, there is always uncertainty. Users may
arrive later and depart earlier than expected with different
arrival SoCs and required SoCs upon departure each time.
Uncertainty also extends to building power draw across the
billing period, which can be affected by several factors such
as weather, ongoing office projects, and sudden grid events
such as the Emergency Load Reduction Programs (ELRPs)
[9], which are demand response approaches to help avoid
rotating outages during peak summer electricity usage periods
from May through October. Thus, policies relying on expected
behaviors to generate actions will often fail once users diverge
from their particular schedules. The simulator handles this
uncertainty by allowing the management to select and test
different policies on set schedules with unexpected arrivals
and departures injected during simulation run time.

C. Billing Costs

Electric utility companies typically offer a variety of stan-
dard billing arrangements. Although billing is usually con-
ducted monthly, the rates charged can differ based on the quan-
tity of electricity consumed by the users. For example, Silicon
Valley Power (SVP) in California, USA, assigns consumers to
one of several tiers based on their consumption behavior. It is
divided into residential and commercial consumers, with the
commercial consumers further divided into levels. Commer-
cial and industrial customers are often subjected to demand
charge and energy charge. The following are the different
billing components:
• Time-of-use rates differ across time-of-day, with peak hours

having higher rates than off-peak times.
• Energy charge is the cost incurred for every kWh of energy

used. It is time-of-use dependent.
• Demand charge reflects the highest rate of electricity

consumption during a specific time interval. Under SVP, if
the energy use exceeds 8,000 kWh per month, and maximum
electric demand does not exceed 4,000 kW, the category that
NATC-SV falls into, they will accrue an additional cost —

the demand charge. For SVP it is composed of two parts:
Maximum Demand and Billing Demand. The Maximum
Demand is determined by the highest average kilowatt (kW)
delivery over any 15-minute interval within that month.
The Billing Demand is the average of the current month’s
Maximum Demand and the highest Maximum Demand in
the past year, including the current month (billing period).
For SVP, the Maximum Demand is only considered during
the peak hours.

• Total bill is the sum of the energy and demand charges over
the billing period. Applying the demand charge depends on
the power utility’s pricing policy. Otherwise, only the energy
charge is considered.

Managing energy and demand charges makes it difficult to
efficiently manage costs along with the charging behavior of
the chargers in the building. Thus, the main problems faced
by building owners and EV manufacturers are: (1) How to
minimize the total costs charged to the building for each billing
period? (2) How to ensure that the EV owner’s demands are
met, given that it is feasible to do so? (3) How to verify this
effectively and efficiently?

IV. OPTIMUS OVERVIEW

OPTIMUS uses a modular, object-oriented architecture
shown in Figure 1. Encapsulating different components and
subcomponents that make up the entire framework makes it
easier to extend for new use cases. We replicate the behavior
of physical systems by utilizing their corresponding dynamic
models, with their interactions being represented through data
exchange at every discrete time interval. The figure also
includes how data and charger owners interact with the frame-
work. OPTIMUS is a complete system that includes both a
backend solver and data generator and a frontend visualization
tool that allows users to fully utilize the backend components.
The system is meant to allow building owners the ability to
train on their data, and then evaluate and benchmark proposed
policies on their defined objectives.

Generative Models: OPTIMUS relies on several data
sources to run. Data provided by owners are first collected and
processed by a pipeline that trains generative models. Each of
the six models: (1) building load prediction, (2) duration of
stay, (3) demand charge forecasting, (4) EV arrival forecast,
(5) Arrival SoC, and (6) Departure SoC, are used to build an
input to the simulator. Each input, which can be as short as a
single day or as long as an entire billing period, is defined as an
episode. These episodes form the basis of what the simulator
interprets as the real world.

Policies: These are algorithms or models trained to identify
the state at each time step and return an action. States, actions,
and policies will be discussed further in Section V.

Frontend UI: Interfaces expose backend components,
which a frontend web application easily accesses. Models for
data generation actively create episodes on the fly. Adjusting
parameters in the UI influences the resulting episode. During
policy execution, the system calls solvers. Owners select a

TABLE I: State Member Variables Description

Attribute Tracked Parameters
Time Current simulation time.

Cars Car ID, arrival time, battery capacity, current soc, required soc,
allowed SoC range.

Chargers Charger ID, charge rate, connected car ID, availability, direction,
and charge limits.

Building Building power draw.

Grid Grid peak type and energy rate.

policy in real time, and the corresponding solver generates
actions based on the input data.

API Interface: OPTIMUS offers an API interface that
enables seamless interaction with devices such as EV chargers
and mobile applications using REST APIs. When an EV plugs
in, the system receives immediate notification, allowing users
to submit additional information, such as estimated departure
time, through mobile apps.

Integrating these components simplifies the process for
owners to select and apply various policies, create episodes
for policy evaluation, and integrate the system with actual EV
charger infrastructure and proprietary mobile applications. The
aim is to provide a straightforward and effective approach to
assess policy performance in specific scenarios, considering
uncertainties. We measure performance by the policies’ effec-
tiveness in minimizing total costs for a billing period.

Handling Uncertainty: Uncertainty in the real world is
represented in OPTIMUS as event injections. Injection times
correspond to sudden EV arrivals, departures, or changes
in user requests. This may occur when a user plugs their
EV to a charger or modifies requirements through the app.
These events are not in the initial input episode and are
thus exogenous to the simulator. There are two types of
injections: (1) arrival injections and (2) update injections.
These injections are triggered in OPTIMUS via REST APIs.

V. DISCRETE EVENT SIMULATOR

In this section, we define the simulator that serves as the
engine of OPTIMUS. We define the states and state transitions
that occur within the simulator. Finally, we define the policies
that interact with the simulator.

A. Events

Input files, known as episodes, feed into the simulator which
then converts them into a list of events. Each event features
a specific time that corresponds to its real-world occurrence.
Four potential events can initiate state changes: (1) grid price
changes, (2) building load readings, (3) car arrivals, and (4)
car departures. An event queue holds all events. The system
processes and removes events that fall within the current time
from the queue.

B. State

The state is a representation of the current environment or
the real world. The simulator is stateless, thus, each state
is a snapshot of the real world only at the current time.

OPTIMUSOWNER

Policy Model
Generaor

Solvers

EV Simulator and Monitoring

Dashboard UI

Policy
Executor

Episode
Generator

Policy
Comparator

API

Data Collection

Car
Arrival

Building
Power

Grid
Events Weather

Data Generation
Models

Greedy
Heuristics

Anytime
Online

Machine
Learning

EV Arrival, Updates,
and Departures

Real-time
Monitoring

Fig. 1: OPTIMUS software design. It includes how data and charger owners interface with the framework.

This prevents any leakage of future information that could
potentially skew their decisions. Each state includes only
the current state of connected cars, current charging rates of
active chargers, building power at that time, and current grid
conditions. Table I lists all the states the simulator tracks.

C. State Transition Model Updates

The simulator is a discrete time-driven simulator that ag-
gregates multiple events within each time step and processes
them all at once. If there are multiple that take place in the
same time step, they are sorted according to priority and
processed in sequential order. The first two events simply
update the state based on the updated price and power meter
reading respectively. However, car arrival events are handled
differently. EV arrivals are considered special events by any
policy. Once a car has arrived at the parking lot, policies
determine which available charger the EV should be connected
to. Finally, car departure simply frees up a charger and flags
it as available again.

At every elapsed time step, cars connected to a charger are
charged via physics-driven battery profiles that consider the
current input charger rate and the SoC constraints for the car
battery. Building energy consumption is computed based on
the last available power reading, assuming that the power draw
was consistent between readings. The sum of all charger usage
and building usage (kWh) multiplied with the energy charge
($
kWh) is the energy cost ($) for this time step. Meanwhile, the

instantaneous power draw (kW) for this time step is considered
when computing the demand cost ($).

D. Policy Driven Charger Actions

Users of OPTIMUS can extend the Policy class by
defining their custom getAction() function within it. This
function, which processes the current state, outputs an array
specifying the charging actions. Through the configuration in-
terface, policies can access a wealth of information, including
constraints and user-defined parameters.

By default, OPTIMUS is equipped with several predefined
policies: an anytime online algorithm, a mixed integer linear
programming approach, and a machine learning model. We
provide a brief description of each below:

Greedy Heuristics: Similar to traditional chargers, these
models are entirely myopic. A greedy charger initiates charg-
ing at the highest rate as soon as an EV connects and
continues until the EV’s state of charge (SoC) reaches either
the established maximum or the departure requirement, for
naive and informed greedy policies, respectively. We employ
this approach as a benchmark in our experiments.

Online Algorithms: Utilizing tree-based search methods
like Monte Carlo Tree Search (MCTS) [10], these anytime
policies tailor actions to the current state. They yield non-
myopic actions that effectively handle uncertainty. Despite
this, their computational demands render online algorithms
slower than their counterparts due to their intensive sampling
techniques.

Mixed Integer Linear Programs: Knowing or assuming
the complete trajectory for a given billing period allows one
to formulate the problem as a linear program and then solve
it. Thus, MILP’s solutions are the upper bounds in terms of
performance. However, they are not responsive to uncertainty,
resulting in potentially non-optimal solutions given enough
uncertainty.

Reinforcement Learning (RL): An RL agent is trained on
an abstracted state using simulated environmental conditions.
action is to adjust the charging rate of each charger. To
minimize total costs over a billing period, we define the reward
for each action based on the required SoC of each car before
departure and the total bill at the end of each episode. We
employ the Deep Deterministic Policy Gradient approach to
train the RL model, considering the continuous action space in
this context. During training, the RL-based policy continuously
interacts with our simulator, which provides state transitions
and features for determining action rewards.

Each of these policies can be queried at any time given
the current state of the environment, which is a snapshot at
the current time. This includes information regarding current
cars plugged in, available chargers, current grid condition,
and current building power draw. Each policy has its method
of generating charging actions while considering uncertainty,
ranging from completely myopic decisions from heuristics to
utilizing some estimates of the possible future trajectories as
in the machine learning models.

Weather
Model

Building
Load

Model

EV Arrival
Model

EV Depart
Model

EV Depart
SoC

EV Arrival
SoC

EV Arrival
Hour

Battery
Type

Fig. 2: Bayesian Network depicting the joint probability dis-
tributions across several models. Squares are static features,
circles are the models, and arrows depict their relationships.

In summary, a policy when given any state, will respond
with a set of charger actions for each charger in the system.
This action persists until the next time the policy is again
queried. The quality of a policy is therefore how effective it
is in meeting the goals set in Section III-C.

VI. EVALUATION OF POLICIES

In this section, we discuss the datasets used to generate
episodes and train the models for policies. We also provide
more information on the different policies and how they are
incorporated into the framework.

A. Datasets

OPTIMUS uses EV data, building power draw data, weather
data, and potential grid events data to train different models.
• EV data includes EV arrival time, departure time, arrival

SoC, and departure SoC for each charging event. Charging
event data is obtained from real-world EV charging data
collected from January 2021 to December 2022 from a
California office building.

• Building data includes power draw meter readings for
Nissan’s California building from April 2023 to January
2024 with a frequency of ∼ 15min.

• Weather data primarily consists of the recorded tempera-
ture and precipitation matching the duration of the recorded
building data.

• Grid Events are specific events triggered by utility com-
panies that signal a change in electricity rates over a
certain period. These can also limit power draw from the
grid by incentivizing power-saving measures and penalizing
overuse.

B. Data Generation

We train models using a Bayesian network that emphasizes
the relationships between different datasets through a large
joint distribution. Figure 2 shows the relationships between the
different models. Battery types are sampled using a probability
based on actual vehicle counts and EV arrival hours are the
different hours in a day. EV Arrival models are Poisson models
trained on weather patterns, arrival hours, and battery types.
The results of arrival models are then fed into the arrival SoC

00:00 04:48 09:36 14:24 19:12 00:00
0

100

200

300

400

Datetime

Po
w

er
(k

W
)

A. Hi Wide
Artifical Hi

Artifical Low
Original Load

Fig. 3: Original power draw over time with artificial power
draw from models to test uncertainty.

arrival departure

5

10

15

20

H
ou

r
of

d
ay

Short Stay

arrival departure

Long Stay

arrival departure

Generative Model

Fig. 4: Different distributions for parking duration based on
selected configurations in the dashboard.

and departure models. These in turn are fed into the departure
SoC models.

Using these models, OPTIMUS can generate input files
representing the expected real-world state. Each input episode
is made up of four files: (1) car schedules, (2) building
load readings, (3) grid costs and schedules, and (4) charger
configurations. Toggles on the application allow the owner
control over how building and EV data is generated. Figure 3
shows different power consumption readings for the same
building, on the same day while, Figure 4 shows different
types of distributions of durations of stay and Figure 5 shows
the arrival and departure distributions for the trained generative
model. This opens up the possibility of testing policies across
different scenarios.

6 12 18 24

1

2

3

Hour of Day

E
V

C
ou

nt
s Arrivals

Departures

Fig. 5: EV arrivals and departures from generative models.

ILP MCTS RL Informed
Greedy

Naive
Greedy

1k

2k

U
SD

($
) Total Bill Demand Charge

0

100

200

300

E
ne

rg
y

G
ap

(k
W

h)

Energy Gap (kWh)

Fig. 6: Comparison of different policy performances (lower is
better). An energy gap of < 0 means cars left without meeting
SoC requirement, > 0 means cars left with more than required.

C. Policy Comparison

Each policy has its methods to generate the charging actions
for any given state. We evaluate the policies by generating
20 samples for a billing period with a duration of a single
day. We run this across multiple policies. Figure 6 shows
each policy’s performances. Ideally, the energy gap should be
0, where all EVs are charged to their desired level. Greedy
heuristics, with their myopic view of the environment, will
only give actions based on the current state, often resulting
in the worst performance. Naive Greedy will charge cars
until the maximum level, resulting in a large positive energy
gap (excess). While Mixed Integer Linear Programming-based
(MILP) policies will consider all present and future car arrivals
and building meter readings and attempt to create a perfect
solution for this single trajectory. Thus, MILP policies will
serve as the upper bounds of performance. However, it relies
on complete knowledge of this single trajectory, any deviation
or injections of uncertainty will degrade its solution. Between
these policies, other approaches such as MCTS and RL will
often undercharge vehicles resulting in a lower bill and a neg-
ative energy gap. However, these policies can accommodate
more uncertainty in EV behavior. The goal for the building
owner is to find a policy that is non-myopic and will perform
well under the uncertainty of EV arrival, departures, SoC
requirements, and power grid fluctuations

VII. REAL WORLD DEPLOYMENT

In this section, we describe how OPTIMUS is deployed as a
web application and how it is integrated into EV chargers and
mobile applications. We also show that our framework can be
extended beyond the intended application of V2B.

A. Web Application

The application serves as an interface to the backend while
allowing owners a clear overall view of the system. Figure 7
shows the main pages of the web app: Generator, Executor,
and Comparator. Users can enter the Generator page, fig. 7a
to generate episodes by selecting parameters shown in Sec-
tion VI-B. They can view the generated episode which consists
of the four main input files (cars, chargers, building, and grid).
Once satisfied, the episode can be named and saved into the
system. This ensures that all other pages can access it.

Once the episode is saved, a user can switch to the Executor
page, fig. 7b, where they can select a policy, and then run
the simulator on an episode. OPTIMUS will go through the
entire episode’s billing period, sending the current state to the
policy and then receiving the policy’s action for each time
step. Once done, OPTIMUS will return control to the user
then they can navigate across time by moving the slider or
clicking on the main plot. Upon clicking, the application will
jump to the corresponding time and update the different plots
and indicators accordingly. At any point in time, they can view
the current metrics for the performance evaluation. Users can
also opt to play the entire day back in real time. Finally,
the Executor page is also the main interface for injecting
uncertainty as vehicle arrivals, departures, and updates.

Users can also switch to the Comparator page to select
multiple policies and compare their performance for the given
episode. For example, Figure 7c shows the result screen
after selecting MILP and a greedy heuristic policy for an
episode. The Comparator tab offers all the same plots as the
Executor page (one set of plots for each policy and episode
combination), with a few exceptions. The Comparator tab will
display all the plots at once without playback ability, it is
limited to showing only the plots without the gauges and
indicators present in the Executor, and it does not support
injections of sudden car arrivals and departures.

B. Injections and API Integration

Figure 7d shows how plugging a car into a charger auto-
matically triggers an arrival injection and reloads the Executor
page with the newly arrived car on the screen. Both mobile
and web applications can be used to update battery require-
ments for a connected EV. This will trigger update injections.
Injections need to pass through feasibility checks before they
can be accepted and executed by OPTIMUS. For example, a
car must arrive before any configuration is updated.

Upon receiving an injection, OPTIMUS will save the states
from the start of the data up to the injected time and freeze it.
It will then modify the input episode to introduce the newly
injected event and run the Executor from this point in time
to the end of the billing period. Locking the states before the
injection ensures that OPTIMUS will not be able to make
any retroactive changes that could improve its performance.
Once processing is done, the injection will be saved as part
of the episode allowing users to re-run the episode with any
desired injection (without having to trigger any API calls from
their end). Injections are sorted by time with arrival injections
being triggered before any update injection. When an injection
is selected in the episode drop-down box, it will trigger all
injections before and up to the currently selected injection,
based on their injection times.

C. Visualization and Generated Plots

Upon execution of any episode, either through the Executor
page or Comparator page, several plots will be generated.
These plots are all navigable with more information provided
on hover. In cases where episodes last longer than a single day,

(a) Generator page with single and multi-day options. (b) Executor page with episode summary and car status.

(c) Comparator page with performance metrics table.

CAR ARRIVES

03:45 pm
at

with

40% SoC

(d) Injection prompted by actual vehicle arrival.

Fig. 7: Main components of the OPTIMUS web application: Generator, Executor, Comparator, and Injections.

00:00
Aug 23, 2023

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Aug 24, 2023

0

20

40

Building Usage Charger UsageGreedy Actions

Time

U
sa

ge
 (k

W
h)

Fig. 8: Energy usage shows chargers and building use (kWh).

08:00
Aug 23, 2023

10:00 12:00 14:00 16:00 18:00 20:00
−20

−10

0

10

20

Charger Rate Over Time

timestamp

cu
rr

en
t_

ch
ar

ge
_r

at
e_

kw

Fig. 9: Charger rates show actions per charger (kW).

the plots will be truncated to the last 24 hours. These plots
are intended to provide a complete picture of the episode.

Figure 8 displays the overall power draw of the building,
aggregating charger usage and building consumption in 15-
minute intervals. Figure 9 depicts the actions of each charger

08:00
Aug 23, 2023

10:00 12:00 14:00 16:00 18:00 20:00

20

40

60

80

Car SOC Over Time

timestamp

so
c

Fig. 10: EV SoC plot shows SoC (%) per EV over time.

08:00
Aug 23, 2023

10:00 12:00 14:00 16:00 18:00 20:00 22:00

8

6

4

2

0

Charger Occupancy

C
ha

rg
er

Fig. 11: Occupancy plots show charger availability.

in the lot, as dictated by the selected policy, thereby enabling
owners to confirm policy adherence and to keep tabs on
individual chargers. Figure 10 presents the EV battery lev-
els, detailing the outcomes of charger activities. Figure 11

00:00
Aug 23, 2023

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Aug 24, 2023

0

500

1000

1500

2000

M
A

X
 D

EM
A

N
D

00:00
Aug 23, 2023

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Aug 24, 2023

0

50

100

150

U
S

D
ol

la
r (

$)
Av

er
ag

e
Po

w
er

 (k
W

) p
er

 1
5m

in

Bill Plot Greedy

Power Draw per 15 min Greedy

Fig. 12: Power demand (kW) and demand charge ($) plots
show how demand charge is influenced by power demand.

indicates the duration each charger is occupied by an EV,
thereby reflecting the efficacy of the charger assignment policy.
Finally, fig. 12 offers a pair of plots that clearly illustrate the
policy’s impact on energy and demand costs, simplifying the
task of pinpointing critical power draw times within the billing
cycle, such as peak demand instances, and it elucidates the
consequences of implementing peak shaving measures or the
lack thereof. Together, these six plots provide owners with an
exhaustive view of the system’s various facets.

D. V2X Extension

While it is primarily designed with V2B in mind, OPTI-
MUS can easily be modified or extended to handle other
V2X deployments such as vehicle-to-home (V2H), vehicle-
to-community (V2C), and vehicle-to-grid (V2G) [11]. V2H
has a single site (home charger) where only a few vehicles
connect to it regularly. By maintaining a record and tracking
vehicles by a unique vehicle ID number (VIN), OPTIMUS
can form a profile for each vehicle and essentially give
personalized actions. V2C can be addressed by aggregating
multiple buildings and their associated chargers in a locality.
Finally, V2G is a direct extension where EV aggregators can
directly sell stored energy in EVs back to the grid.

E. Dataset Extension

While the models and dataset used in this paper are pro-
prietary Nissan data, OPTIMUS is data agnostic. As long as
several key features are present in the data, such as battery
model, SoC, charger types, and duration of stay, models can
still be trained on any EV data. Open source datasets of EV
charging sessions such as EVWatts [12] and ACN-Data [13]
can be used with OPTIMUS with minimal modifications.

VIII. CONCLUSION AND OUTLOOK

In this work, we present OPTIMUS, a complete end-to-end
discrete event simulator and monitoring tool for vehicle-to-
building EV charging optimization. This work was done in
close collaboration with Nissan as a platform that would allow
them to use their data to train charger behavior policies, create
generative models, and evaluate and benchmark different con-
figurations before their deployment. Going forward, we will be
extending this work to incorporate contract negotiations with
users and to handle other V2X implementations and integrate
it with Nissan’s planned test bed.

ACKNOWLEDGMENTS

This material is based upon work sponsored by the National
Science Foundation (NSF) under Award Numbers 1952011
and 2238815 and by Nissan Advanced Technology Center -
Silicon Valley. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF
or Nissan. Results presented in this paper were obtained using
the Chameleon Testbed supported by the NSF.

REFERENCES

[1] A. Brown, J. Cappellucci, A. Heinrich, and E. Cost,
“Electric vehicle charging infrastructure trends from the
alternative fueling station locator: 3rd quarter 2023.”

[2] K. Tanguy, M. R. Dubois, K. L. Lopez, and C. Gagné,
“Optimization model and economic assessment of collab-
orative charging using vehicle-to-building,” Sustainable
Cities and Society, 2016.

[3] C. Heymans, S. B. Walker, S. B. Young, and M. Fowler,
“Economic analysis of second use electric vehicle bat-
teries for residential energy storage and load-levelling,”
Energy Policy, 2014.

[4] D. P. Chassin, K. Schneider, and C. Gerkensmeyer,
“Gridlab-d: An open-source power systems modeling and
simulation environment,” in 2008 IEEE/PES Transmis-
sion and Distribution Conference and Exposition, 2008.

[5] S. Saxena, “Vehicle-to-grid simulator,” 2013.
[6] K. Sarieddine, M. A. Sayed, D. Jafarigiv, R. Atallah,

M. Debbabi, and C. Assi, “A real-time cosimulation
testbed for electric vehicle charging and smart grid
security,” IEEE Security and Privacy, 2023.

[7] Z. J. Lee, S. Sharma, D. Johansson, and S. H. Low, “Acn-
sim: An open-source simulator for data-driven electric
vehicle charging research,” 2021.

[8] E. Balogun, E. Buechler, S. Bhela, S. Onori, and R. Ra-
jagopal, “Ev-ecosim a grid-aware co-simulation platform
for the design and optimization of electric vehicle charg-
ing infrastructure,” IEEE Transactions on Smart Grid,
2023.

[9] J. Aghaei, M.-I. Alizadeh, P. Siano, and A. Heidari,
“Contribution of emergency demand response programs
in power system reliability,” Energy, 2016.

[10] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A survey of monte carlo
tree search methods,” IEEE Transactions on Computa-
tional Intelligence and AI in Games, 2012.

[11] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities
and challenges of vehicle-to-home, vehicle-to-vehicle,
and vehicle-to-grid technologies,” Proceedings of the
IEEE, 2013.

[12] Y. Pavuluri, “Ev watts public database,” 2024.
[13] Z. J. Lee, T. Li, and S. H. Low, “Acn-data: Analysis

and applications of an open ev charging dataset,” in
Proceedings of the 10th ACM International Conference
on Future Energy Systems, 2019.

