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Abstract—Public transit systems are paramount in lowering
carbon emissions and reducing urban congestion for environ-
mental sustainability. However, overcrowding has adverse effects
on the quality of service, passenger experience, and overall
efficiency of public transit causing a decline in the usage of
public transit systems. Therefore, it is crucial to identify and
forecast potential windows of overcrowding to improve passenger
experience and encourage higher ridership. Predicting ridership
is a complex task, due to the inherent noise of collected data
and the sparsity of overcrowding events. Existing studies in
predicting public transit ridership consider only a static depiction
of bus networks. We address these issues by first applying a
data processing pipeline that cleans noisy data and engineers
several features for training. Then, we address sparsity by
converting the network to a dynamic graph and using a graph
convolutional network, incorporating temporal, spatial, and auto-
regressive features, to learn generalizable patterns for each
route. Finally, since conventional loss functions like categorical
cross-entropy have limitations in addressing class imbalance
inherent in ridership data, our proposed approach uses focal
loss to refine the prediction focus on less frequent yet task-
critical overcrowding instances. Our experiments, using real-
world data from our partner agency, show that the proposed
approach outperforms existing state-of-the-art baselines in terms
of accuracy and robustness.

Index Terms—Public Transit, Big Data, Graph Neural Net-
work, Time Series, Occupancy Prediction, Data Sparsity

I. INTRODUCTION

The transportation sector has a massive environmental im-
pact it contributes 24% of the total carbon dioxide emissions
and in the United States, it accounts for 33% of the total
greenhouse gas emissions [1, 2]. To address the environmental
impact, the US government has increased the budget allocated
to the public transportation sector — 42% annual increment
from 2022 to 2026 as compared to 2016 to 2021 [3]. Public
transportation is at the center of this vision as buses are the
cheapest and most accessible form of transit across the country.
Travel by bus results in fewer greenhouse gasses per passenger
mile in comparison to a typical single-occupancy car [4].
However, public transit is only effective when it becomes a
preferred mode of transport over private vehicles.

With this motivation in mind, there has been a significant
increase in research to improve public transport systems and
bring in additional consumers, thus guiding advancement in
urban mobility. One approach to improving the transit expe-

rience is to reduce potential overcrowding through predicting
demand and thus occupancy, which can inform downstream
decisions, for example, routing. With the help of predictions
made by these models, transportation operators can plan to
shorten the gap between two consecutive buses during peak
times and prevent overcrowding. However, the available data
is inherently noisy and sparse, with the majority of high
ridership incidents occurring very infrequently. This “heavy
tail problem”, is shown in Figure 1, where it is evident that
trips with higher occupancy numbers are exceedingly rare.

Thus, significant efforts are being made to employ spatial
and temporal characteristics in forecasting ridership in public
transportation networks through the application of machine
learning and deep learning techniques as they can learn com-
plex abstractions from data [5, 6, 7]. (a) Liu et al. [8] depict
the city’s road network with a static graph, but their method
overlooks the bus network’s dynamic nature thus, adopting a
dynamic graph strategy addresses this limitation; (b) Certain
methodologies approach the task as a regression issue, which
results in the “heavy tail problem” or they fail to utilize a loss
function conducive to better learning of low-frequency classes;
(c) Talusan et al. [9] tackle the problem of trip level day-
ahead prediction, however, determining the occupancy at the
stop level can help transit agencies alter the route patterns and
headway to cope with high demand and improve serviceability.

Challenges and Contributions: We introduce a day-ahead,
stop-level ridership prediction for public bus transit. Day-
ahead prediction helps transit agencies determine the demand
at every stop for the next day. We predict the ridership at
every stop in a route over a time window. We make use of
data sources such as Automatic Passenger Counting (APC)
and General Transit Feed Specification (GTFS). However,
ridership prediction of public bus transit from these data
sources can be quite challenging. We have applied robust
data pre-processing techniques to clean the data to remove the
noise present in the datasets. To reduce the heavy tail problem,
we convert the regression problem into a classification task,
mitigating sparsity issues by transforming continuous output
variables into discrete categories (Low, Medium, High, Over-
load). This approach simplifies the learning task, as the model
focuses on distinguishing between predefined classes instead
of predicting precise continuous values. Having discrete cate-
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Fig. 1: Trips with > 30 riders are in the heavy tail.

gories also provides greater interpretability for transit agencies
for example, knowing the ‘high’ and ‘overload’ categories
can directly guide decisions on dispatching more buses or
adjusting routes. We address sparsity by making use of state-
of-the-art solutions for class imbalance such as the focal loss
function [10] which makes the model more sensitive to sparse
classes, to overcome class imbalance.

We then convert the transit networks into distinct graphs
to leverage their structure and apply graph convolutional net-
works (GCNs) to the task of ridership prediction. By exploiting
the graph topology of bus routes, where nodes represent bus
stops and edges denote the path taken by the bus for a given
route in a time window, GCNs are uniquely equipped to learn
and predict the patterns of bus ridership across different time
windows and routes. Through our experiments, we show how
we solve the problems of sparsity and noise present in our
data sources.

Organization: This paper is divided into the following
sections: Section II describes the related work. In Section III
we formulate the problem statement, Section IV highlights the
data collection and pre-processing process. Section V explains
the approach used in this paper. Section VI gives a brief on the
results obtained. Section VII details the comparison between
our model and its variants, highlighting the impact of different
configurations. Finally, Section VIII discusses the future scope
of the work presented in this paper.

II. RELATED WORK

There has been a growing interest in developing predictive
models for trip-level and stop-level ridership prediction of
public bus transit. Talusan et al. [9] demonstrate the impact
of altering the time window on day-ahead ridership forecasts
utilizing XGBoost. They show how each feature influences
the prediction, highlighting the substantial role that temporal
attributes such as hour and month play in shaping the overall
forecast accuracy. Wood et al. [7] and Yan et al. [5] employ
a Random Forest Classifier (RFC) model for predicting real-
time bus ridership and modeling the demand of ride-sourcing
services. Their research showcases the effectiveness of RFC in
handling models based on origin-destination (OD) pairs and
time-series data for accurate predictions.

Numerous studies have been conducted on public transit
occupancy prediction using a plethora of deep learning tech-
niques, such as long-short term memory (LSTM) and multi-
task learning (MTL). Jiao et al. [11] utilize an LSTM model to
predict bus occupancy levels during the Covid-19 pandemic.

TABLE I: Description of Symbols

Symbol Description
R Set of Routes
r A single route ∈ R
T Set of Trips
t A single trip ∈ T
S Set of Stops
s A single stop ∈ S
W Set of Time windows in a day
w Time window during a day ∈ T I
d Historical Date
X Input feature space
Y Output space
f̂ Objective function
θ Set of parameters
θ∗ Optimal set of parameters
L Loss function

Bin Zulqarnain et al. [12], adopt an alternative perspective on
the occupancy prediction challenge, theorizing and showing
that the integration of related tasks like occupancy and delay
can improve the forecasting accuracy for both aspects.

Liu et al. [8] utilize GraphSAGE [13] for short-term traffic
speed forecasting within an urban road network, emphasizing
its application in dealing with missing link speed data. The
framework involves processing vehicle trajectory data and
constructing a segmented network, where a data recovery
algorithm imputes missing speed data by considering nonlinear
spatial and temporal correlations. This approach offers advan-
tages like avoiding artificial settings required by most graph
algorithms and facilitating a more intuitive and efficient repre-
sentation and analysis of traffic speeds. However, when applied
to public transit, it does not directly address dynamic edges,
which is a limitation compared to the proposed approach that
aims to capture the dynamic nature of the bus transit network
more accurately.

III. PROBLEM STATEMENT

To satisfy the mobility demands in large urban cities, transit
systems must operate efficiently. Hence, public bus transit sys-
tems must predict and monitor ridership levels. Overcrowding
might prevent potential passengers from boarding the bus,
lowering their willingness to use public bus transit systems.
Accurately predicting ridership levels a day ahead enables
transit agencies to allocate resources, enhance passenger ex-
perience, and take preventive measures if demand fluctuates.
Thus, our problem is to precisely forecast the maximum
ridership levels for a given stop, a day in advance.

In a public transit system, buses move along a series of
designated routes R, where ri ∈ R consists of a total of k
trips {t1, t2, · · · , tk} ∈ T . An individual trip t ∈ T denotes a
bus traveling in a single direction for one leg of a round trip.
For every trip tj we have a set of n sequentially ordered stops
represented by {sj1, s

j
2, · · · , sjn} ∈ Sj . For our forecasting

problem, we divide the day into 30-minute time windows
W , where |W| < 48. Thus, for a route r ∈ R consisting
of {sj1, s

j
2, · · · , sjn} ∈ Sj

w stops in a time window w ∈ W , our



goal is to forecast the occupancy at each stop sjn ∈ Sj in the
future.

Let X represent the input feature space, where each el-
ement x ∈ X corresponds to an individual data instance,
precisely x denotes the set of features for a stop sjn ∈
Sj
w at the time window w and date d, where d refers

to the historical date. Let Y represent the output space
{Low,Medium,High,Overload}. Our objective is to learn
a function f̂ : X → Y such that f̂(x′) gives a prediction
for the unseen input x′ at time window w and date d + 1,
where d+1 refers to the date in the future. This function f̂ is
parameterized by a set of parameters θ in Table I. The learning
process involves determining the optimal set of parameters θ∗

that minimizes the loss function L:

θ∗ = argmin
θ

n∑
i=1

L(f̂(xi, θ), yi)

IV. DATA COLLECTION AND PROCESSING

The analysis and improvement of bus transportation systems
is heavily data-driven. This section describes our data sources;
the spatial and temporal characteristics present in our dataset;
processes used for cleaning and augmentation of our dataset;
and lastly, the features used for our graph neural network.
Table II contains a list of all the features that were used, as part
of the graph neural network model, as well as our baselines.

A. Datasets

We use Automatic Passenger Count and General Transit
Feed Specification data for the WeGo Public Bus Transit
system in Nashville, TN, spanning from January 2022 to
March 2023. Below is a summary of the data sources:

Automatic Passenger Counting (APC): Provides informa-
tion on the number of people that enter and exit the bus at each
stop in a trip (also called ons and offs). The actual ridership
was recorded by infrared door sensors on the bus. Each entry
in APC serves as a journal and logs the current state of the
bus at each stop in a trip, scheduled arrival time, scheduled
departure time, and actual arrival and departure times.

General Transit Feed Specification (GTFS): This is a
static data prepared by the transit agency that details the
schedule of all the trips and routes taken by the buses for
a certain period [14]. Other information such as geometric
routes, scheduled arrival time and scheduled departure time
are used to determine the scheduled headway along with traffic
data.

Traffic: We use road segments present in traffic data and
match the stops within these segments using latitude and
longitude coordinates. We also join on temporal properties,
with traffic data having a frequency of five minutes.

Weather: We acquired the weather data from Darksky [15].
The weather data was matched with APC based on the
geographic locations of the stops and temporal attributes such
as year, month, day, and hour.

Holidays: These are based on publicly available federal and
state calendars that list school breaks and public holidays.

B. Data Cleaning and Augmentation

Raw APC data from buses is noisy and typically contains
missing values for some attributes. We identified many entries
with missing scheduled times and imputed these data points
by merging them with GTFS. We proceed to remove entire
trips with inaccurate or dirty entries. We perform cleaning and
filtering at the trip level even though APC data is collected
at the stop level; APC data captures events each time a bus
arrives at a stop. Our approach involves identifying undesirable
entries based on specific criteria, followed by removing entire
trips associated with those entries [9]. Finally, we merge
the resulting data with other datasets (weather, traffic, and
holidays).

C. Feature Engineering

We selected a total of 14 features from the APC, GTFS,
traffic, weather, and holiday datasets. Among these features,
we one hot encoded three of them — route direction name,
is holiday, and is weekend. We converted four categorical
features into numbers using a label encoder — time window,
stop sequence, year and month. We numerically encoded the
remaining seven features using a min-max scaler [16]. We also
introduce an auto-regressive feature, past 3-week load, that
contains information regarding the average occupancy at the
stop over the past three weeks within the same time window,
this feature helps the model get information regarding how
public bus transit ridership over the past three weeks affects
the current ridership.

From the data, we select only trips that: (1) have route
directions to and from downtown; (2) do not include any
disruptions; and (3) do not have the past 3-week load feature as
a null value. Finally, we bin the occupancy data based on the
discussions with WeGo Public Transit, to be able to identify
instances where buses have high occupancy or are overloaded.

• Low: 0% to 33% of total vehicle capacity.
• Medium: 33% to 66% of total vehicle capacity.
• High: 66% to 100% of total vehicle capacity.
• Overload: 100%+ of total vehicle capacity.

V. METHODOLOGY

In this section, we present our methodology for predicting
ridership. We define how we translate bus networks into graphs
and how we use graph neural network models. We show how
focal loss increases sensitivity to heavy tail problems. Finally,
we enumerate hyperparameter search and bootstrap processes.

A. Representing Bus Networks as Graphs

We create a unique graph for each of the three routes,
{3, 52, 55}, that encapsulates the unique characteristics and
dynamics of each route. Our analysis divides the day into 48
distinct time intervals, each spanning 30 minutes, to cover
daily dynamics. As the headway for buses ranges between
15 to 60 minutes; a 30-minute interval ensures that all buses
within this headway range are captured without significant
loss of detail that could result from averaging information
across different buses in the same route. We model the bus



TABLE II: Data Features and Sources

Dataset Features Source Frequency Type Description

Transit

Route ID APC N/A Temporal Route ID of the current route
Route direction name APC N/A Spatio-temporal Name of route direction
Year APC N/A Temporal The year of the trip
Month APC N/A Temporal The month of the trip, 12 unique values
Time Window Derived N/A Temporal Window of time of the day (each window is 30 min each)
Stop sequence APC N/A Spatio-Temporal Captures the order and context of stops within a given route
Distance traveled GTFS N/A Spatial The distance covered from the previous stop to the current stop
Occupancy (Prediciton Output) Derived N/A Spatio-temporal Total occupancy at the trip (after alights and boards)

Traffic Average Speed Traffic 5 minutes Spatio-temporal Median speed observed on a specific road segment
Congestion Traffic 5 minutes Spatio-temporal Measure of vehicle travel density on major roadways

Weather
Precipitation Intensity Darksky 1 hour Spatio-temporal Recorded Precipitation Intensity
Humidity Darksky 1 hour Spatio-temporal Recorded water vapor present in the air
Temperature Darksky 1 hour Spatio-temporal Recorded Temperature measured in Fahrenheit

Holidays School breaks Calendar 1 day Temporal Scheduled school breaks and holidays in a calender year
National holidays Calendar 1 day Temporal National holidays

Auto-regressive Past Week Load Derived Variable Spatio-temporal Average of the occupancy at the stop over the past three weeks within
the same time window
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Fig. 2: Workflow diagram showing the GCN model pipeline for occupancy prediction, from data preprocessing and clustering
to hyperparameter optimization and model testing.

transit network for individual routes using an approach that
combines static nodes with dynamic edges for a dynamic graph
representation [17]. Nodes represent all the stops in the route
and edges represent the path along which the bus travels for
a route in a given time window of 30 minutes. We create a
single graph for each time window in the day for each route.
Our methodology employs a dynamic graph model to account
for the variable patterns of bus routes, which evolve due to
factors like road closures, construction, and adjustments made
to enhance service in specific regions.

Thus, for a route r ∈ {3, 52, 55}, we create a digraph that
consists of nodes and edges denoted by Gw

r = (Nw
r , Ew

r ),
where Gw

r represents a graph for a route r and time window
w ∈ W , where |W| < 48; Nw

r depicts all the stops (nodes)
in route r from January 2022 to March 2023 throughout our
dataset, Ew

r represents the (edges) path along which the buses
travel for a route r in the time window w. Thus two nodes
are connected by an edge if a bus passes through those stops
in the corresponding time window.

B. Graph Neural Network Models

Once we convert the routes in a public transit network
into graph representations, we use these graphs as input for
a machine learning model to forecast bus ridership. We use
GCN layers to leverage the structure of the graph to perform
convolutions directly on the graph. The essential operation of
a GCN involves aggregating feature information from a node’s
neighbors and combining it with the node’s own features to
generate a new representation for the node. This aggregation

Input Graph Data

GNN Layer (GCN, ChebConv, or GraphSAGE)

Dropout Layer

Fully Connected Layer

Dropout Layer

m layers

m-1 layers

n layers

n-1 layers

Softmax
Activation4 class bins output

Low Med Hi Over

Fig. 3: Generalized graph neural network (GNN) architecture
for node classification.

is key for the ridership task, as this helps the model learn the
effect of neighboring stops on the occupancy of the current
stop. The layer-wise propagation rule for a GCN is given
by eq. (1) [18], where X ′ is the output feature matrix after
applying the graph convolution, where each row represents the
updated features of a node; σ denotes a non-linear activation
function, in our work ReLU (σ(x) = max(0, x)), is applied
element-wise to the result of the graph convolution operation;
D̃ is the diagonal degree matrix; X is the input feature matrix;
θ is the weight matrix associated with the layer.

X ′ = σ(D̃− 1
2 ÃD̃Xθ) (1)



TABLE III: Percentage of Stops by Class for Each Route

Class / Bin Route 3 Route 52 Route 55
Low Occupancy (Bin 0) 93.74% 83.61% 79.90%
Medium Occupancy (Bin 1) 5.36% 13.81% 14.96%
High Occupancy (Bin 2) 0.67% 2.07% 3.58%
Overload Occupancy (Bin 3) 0.23% 0.51% 1.55%

Finally, we create a unique model for each route. Each input
branch is followed by m GCN layers, in every GNN layer we
have x hidden channels. Following the m GNN layers we
include n fully connected (dense) layers, and each fully con-
nected layer contains y hidden neurons. To prevent the model
from overfitting, each GNN and dense layer has a dropout
layer (except the final GNN and dense layer), hence our model
has n + m − 2 dropout layers and z dropout rate. Finally,
we have a single output layer with softmax as the activation
function. We determine the values of m,n, x, y, andz through
hyperparameter search. Fig. 2 and 3 depict the GNN model
framework and the architecture used in our work respectively.

C. Dealing with Imbalanced Data

We use the focal loss function [10] to address the class
imbalance present in ridership classes. This approach is par-
ticularly effective when dealing with imbalanced datasets,
as it modifies the standard cross-entropy loss to apply a
weighting factor to the loss function. This factor decreases
the loss contribution from easy examples and amplifies the
loss for hard, misclassified examples, thus focusing more on
the minority classes which are harder to predict but more
critical. We determine the weighting factor using the formula
mentioned in eq. (2), where αi is the weighting factor for
class i ∈ {0 : Low, 1 : Medium, 2 : High, 3 : Overload}
and Instancei is the number of instances of class i present
in the dataset.

αi =
Total Instances

Instancesi
(2)

In our case, the ‘High’ and ‘Overload’ categories represent
the minority classes with significantly less data compared
to the ‘Low’ and ‘Medium’ classes as depicted in table III.
The focal loss function is given in eq. (3), where pi is the
model’s estimated probability for the class with label i, αi is
the weighting factor for class i to balance class frequencies
as represented in eq. (2), and γ is a focusing parameter that
adjusts the rate at which easy examples are down-weighted.

FocalLoss(pi) = αi(1− pi)
γ log pi (3)

D. Hyperparameter Search and Bootstrap

We implemented a hyperparameter search strategy utiliz-
ing 10-fold cross-validation (CV). We leveraged Bayesian
optimization [19], a probabilistic model-based optimization
technique for the hyperparameter search process. We also use
bootstrap aggregation to capture the reliability and stability
of our models. We conducted three bootstrap iterations, using
10-fold cross-validation (CV) within each bootstrap sample.
We have reported the range of values for each hyperparameter

TABLE IV: Hyperparmeters for Day Ahead - Stop level GNN
models

Hyperparameter Name Range
Epochs [300, 600]
Patience [50, 200]
Learning Rate [0.0001, 0.1]
GNN Layers [1, 3]
GNN hidden channels [1, 128]
Chebyshev Filter [1, 5]
Dense layer count [1, 3]
Dense hidden channels [1, 256]
Dropout Rate [0.0,0.5]
Random Seed [0, 300]

in table IV. We utilize Ray [20], an open-source framework
that enables simple and efficient parallelization of tasks to
manage hyperparameter searches across multiple bootstrap
samples.

VI. RESULTS AND DISCUSSION

In this section, we provide an evaluation of our proposed
framework and compare the results against several state-of-the-
art baselines. We conducted our experiments on 36-core Intel
Core i9-10980XE with NVIDIA GeForce RTX 3090 (24GB)
and 125 GB RAM, and 96-Threads Intel Xenon Gold 6240R
and 192 GB RAM, provided by the Chameleon testbed [21].

A. Baselines

We evaluate the proposed method’s effectiveness for rider-
ship forecasting by considering the following state-of-the-art
baselines:
• ChebConv [22]: This method leverages Chebyshev poly-

nomials as convolutional filters to capture localized graph
patterns, enabling efficient learning of node representations.

• GraphSAGE [8]: This method exploits the node features
and topological structure of each node’s neighbor to generate
new node representations.

• Random Forest Classifier [5, 7]: This method builds
numerous decision trees during the training phase and
integrates their predictions to boost overall accuracy and
prevent overfitting.

• XGboost [9]: This method employs an ensemble of decision
trees, refined iteratively via gradient boosting.

B. Experimental Setup

Our focus is on routes leading to and from the downtown
area, motivated by the observation that overcrowding predom-
inantly occurred in that area, with routes outside this area
experiencing minimal overall trips. Consequently, from a total
of 35 unique bus routes, there are only 21 that cover the most
densely populated areas of the city. Among these, we choose
the three routes, {3, 52, 55}, based on the highest quarterly
ridership [23, 24]. In our study, we systematically partitioned
the dataset into three distinct subsets: training, validation,
and testing. To closely mimic real-world operational scenarios
and ensure external validation of our results, we constructed
the validation and test sets to reflect monthly variations in



TABLE V: Mean and standard deviation for standard and weighted F1-score, precision, recall, and MCC for all models, tested
on Routes 3, 52, and 55 data from January 2022 to March 2023.

Route 3 Route 52 Route 55
Model F1 Precision Recall MCC F1 Precision Recall MCC F1 Precision Recall MCC
GCN 79.3 ± 0.69 93.5 ± 0.12 70.8 ± 1.09 22.6 ± 0.67 70.0 ± 0.57 84.6 ± 0.13 63.3 ± 0.77 29.6 ± 0.46 72.1 ± 0.48 81.7 ± 0.15 67.2 ± 0.65 34.9 ± 0.54
CHEB 72.5 ± 5.82 93.1 ± 0.38 61.7 ± 7.30 16.5 ± 1.41 69.1 ± 4.65 84.4 ± 0.42 63.0 ± 5.99 29.7 ± 3.72 71.2 ± 1.28 81.4 ± 0.19 66.0 ± 1.75 33.5 ± 1.58
GSAGE 77.4 ± 1.08 93.5 ± 0.13 68.1 ± 1.70 21.3 ± 1.07 67.8 ± 5.56 84.7 ± 0.21 61.3 ± 6.52 29.2 ± 3.68 69.3 ± 1.82 81.0 ± 0.50 63.4 ± 2.43 30.6 ± 1.13
RFC 93.6 ± 0.20 93.2 ± 0.20 94.2 ± 0.21 40.7 ± 1.32 84.9 ± 0.05 84.4 ± 0.11 85.7 ± 0.10 45.1 ± 0.32 75.2 ± 0.94 76.8 ± 3.00 77.2 ± 0.24 34.0 ± 0.88
XGB 93.5 ± 0.16 93.2 ± 0.16 94.6 ± 0.10 38.2 ± 0.80 84.8 ± 0.12 84.2 ± 0.15 86.6 ± 0.09 44.1 ± 0.46 81.8 ± 0.15 80.9 ± 0.17 83.4 ± 0.06 44.9 ± 0.39

Model F̂1 ˆPrecision ˆRecall ˆMCC F̂1 ˆPrecision ˆRecall ˆMCC F̂1 ˆPrecision ˆRecall ˆMCC
GCN 50.5 ± 1.12 51.6 ± 1.22 51.3 ± 0.65 35.4 ± 0.81 52.9 ± 0.42 54.3 ± 1.06 52.8 ± 0.30 37.4 ± 0.50 57.7 ± 0.90 57.8 ± 0.97 57.7 ± 0.97 43.7 ± 1.33
CHEB 47.6 ± 3.05 48.7 ± 3.07 48.3 ± 2.29 31.5 ± 2.85 50.6 ± 1.48 53.6 ± 2.02 51.3 ± 1.61 36.0 ± 2.19 56.7 ± 0.13 56.8 ± 0.23 56.9 ± 0.04 42.6 ± 0.05
GSAGE 50.5 ± 1.21 52.0 ± 0.94 51.1 ± 0.62 35.2 ± 0.67 51.3 ± 1.54 55.7 ± 1.97 51.7 ± 1.79 36.6 ± 2.23 55.1 ± 1.31 55.5 ± 1.57 55.4 ± 0.83 40.7 ± 1.04
RFC 36.8 ± 0.56 49.0 ± 0.44 42.1 ± 0.51 25.5 ± 0.36 38.2 ± 0.75 49.2 ± 1.37 43.7 ± 0.61 27.0 ± 0.85 45.8 ± 3.41 48.5 ± 7.97 52.6 ± 2.25 39.0 ± 2.71
XGB 30.9 ± 2.56 46.3 ± 2.03 37.7 ± 1.65 20.0 ± 1.91 31.0 ± 0.93 47.7 ± 2.05 38.7 ± 0.64 20.5 ± 1.02 44.0 ± 0.28 49.9 ± 0.22 46.9 ± 0.19 30.7 ± 0.31
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Fig. 4: Relative performance of baseline models in terms of
weighted F̂1, ˆprecision, and ˆrecall against our GCN model for
Routes 3, 52, and 55. Positive values indicate metrics where
GCN outperforms the baseline methods.

ridership patterns. This approach acknowledges the temporal
dynamics inherent in public transit usage, which can fluctuate
based on factors like the day of the week and seasonal changes.
For each month, we first clustered the data (using spectral
clustering) based on key features: is weekend, number of
patterns, number of trips, and time window of first and last
trip. From each cluster, we uniformly sampled one day at
random to form the validation set and similarly sampled a
different day for the test set. This clustering aims to capture the
intrinsic structures and recurring patterns within the data. By
repeating this process for three iterations, we created our train-
validation-test samples for each bootstrap iteration. We used
the train-validation sets for hyperparameter search with K-fold
validation, as described in the previous sections. Finally, after
obtaining the best hyperparameters, we trained the models on
both the train and validation sets, obtained the final model,
and reported the results.

C. Discussion

We addressed the challenge of predicting bus occupancy
across multiple routes with varying levels of data availabil-
ity, specifically focusing on the sparse classes ‘high’ and
‘overload’. Our approach utilizes a GCN model with separate
models trained for each route to accurately capture route-
specific characteristics. The performance of our GCN model
was compared to state-of-the-art baselines.

∆metric = metricGCN − metricmethod (4)

The GCN model coupled with focal loss demonstrated
superior performance, particularly in identifying the ‘overload’
classes, where data is inherently sparse. Despite the limited
label availability for this class, the model achieved signifi-
cantly better weighted F̂1 scores and Matthews Correlation
Coefficient ( ˆMCC) values as described in fig. 4 and table V.
The MCC is particularly effective for models’ evaluation on
imbalanced datasets as it offers a balanced measure capable of
effectively handling varying class sizes [16]. The performance
metrics in fig. 4 are quantified by the percentage difference
from the mean value with the GCN model as reference, as
defined in eq. (4). Error bars represent the variance, indicating
the consistency of GCN’s relative performance across different
evaluations. Models with a positive value are outperformed
by our approach while those with negative values show mod-
els that outperform GCN. Our model is outperformed when
evaluated using conventional metrics, however it demonstrates
superior performance upon analysis with weighted metrics.
This discrepancy arises because weighted metrics account for
class imbalance by assigning greater importance to the accu-
rate classification of underrepresented classes. Consequently,
although other models may excel in predicting outcomes for
classes with higher label counts, they fall short in classifying
instances of the sparse ‘overload’ class.

Focal loss contributes to improved performance by reducing
the relative loss for well-classified examples and putting more
emphasis on correcting misclassified data points, effectively
preventing the overwhelming number of ‘normal’ class sam-
ples from diluting the contribution of the sparse ‘overload’
class during training. This targeted approach ensures that our
model does not become biased towards the majority class
and improves the robustness of predictions across all classes.
This success is also attributed to the GCN’s ability to capture



TABLE VI: Mean and standard deviation for standard and weighted F1-score, precision, recall, and MCC, for our GCN model
and its variants tested on Routes 3, 52, and 55 data of March 2023.

Route 3 Route 52 Route 55
Model F1 Precision Recall MCC F1 Precision Recall MCC F1 Precision Recall MCC
GCN 68.8 ± 3.60 93.1 ± 0.70 56.8 ± 4.64 18.4 ± 0.79 65.3 ± 5.50 79.6 ± 0.77 60.0 ± 7.10 28.7 ± 4.36 68.3 ± 2.50 80.0 ± 0.65 62.8 ± 2.92 32.3 ± 1.53
GCN-C 92.0 ± 0.53 91.8 ± 0.56 92.4 ± 0.54 36.5 ± 2.54 79.4 ± 1.04 79.5 ± 0.87 79.9 ± 1.36 41.4 ± 2.01 78.8 ± 1.10 79.9 ± 0.76 78.0 ± 1.33 43.2 ± 0.64
GCN-A 86.3 ± 3.50 92.5 ± 0.90 82.4 ± 5.75 30.6 ± 1.12 64.8 ± 7.84 79.8 ± 0.36 59.4 ± 9.45 28.6 ± 7.01 61.7 ± 7.55 80.1 ± 0.71 55.4 ± 8.64 27.5 ± 5.44

Model F̂1 ˆPrecision ˆRecall ˆMCC F̂1 ˆPrecision ˆRecall ˆMCC F̂1 ˆPrecision ˆRecall ˆMCC
GCN 54.5 ± 3.29 59.2 ± 6.33 54.7 ± 3.71 41.3 ± 6.26 46.8 ± 2.80 50.9 ± 0.45 47.7 ± 2.62 31.1 ± 3.08 57.6 ± 0.22 58.4 ± 0.30 57.7 ± 0.26 43.7 ± 0.37
GCN-C 28.5 ± 4.74 33.9 ± 8.75 37.1 ± 2.86 18.6 ± 4.10 39.1 ± 2.31 46.4 ± 1.28 44.0 ± 1.95 27.1 ± 2.45 52.6 ± 1.49 52.9 ± 0.89 54.3 ± 1.52 39.5 ± 1.91
GCN-A 50.7 ± 11.8 55.8 ± 18.2 53.8 ± 8.99 40.2 ± 12.0 47.9 ± 4.32 51.5 ± 2.88 48.4 ± 4.81 32.0 ± 6.15 55.5 ± 2.17 57.9 ± 1.31 55.8 ± 1.74 41.7 ± 2.14

the complex topological structures of the data, enabling it to
recognize patterns that indicate ‘overload’ even from a small
number of examples.

Unlike models that may require a substantial volume of
samples to learn effectively, our model’s architecture allows
it to amplify the signal from the scarce ‘overload’ labels.
This capacity stems from the strength of graph-based learning
in situations where traditional models might struggle due to
the sparsity of critical labels. Additionally, the GCN model’s
consistent performance across different routes indicates its
robustness and suggests that it is well-suited in the context of
unbalanced class distribution. Our model achieves an average
accuracy of 71% for route 55, 46% for route 52, and 34% for
route 3 across all bootstrap iterations. The ability to accurately
predict ‘overload’ scenarios is of high practical relevance,
as it enables better management of bus fleet operations and
improves passenger experience by preventing overcrowding.

VII. ABLATION STUDY

The ablation study was conducted to assess the influence
of certain components and methodological decisions on the
performance of our graph neural network models in the task
of bus ridership prediction. For this study, we focused on the
data from a single month, March 2023, to maintain consistency
and control in our experimental comparisons. In table V, GCN
with focal loss (denoted as GCN) is compared to models with
varying aspects in this study: (a) Loss Function (GCN-C):
We assessed the effect of changing the loss function from
Focal Loss to Categorical Cross-Entropy; (b) Model Structure
(GCN-A): We evaluated the difference between modeling each
bus route separately (our approach) and aggregating all routes:
{3, 52, 55} into a single model.

Overall, we have a significant improvement by using Focal
loss as our loss function, wherein, we see more than 10%
improvement for routes with highly imbalanced data across all
metrics. From fig. 5, we observe that our method of deploying
a single model per route excels over the all-routes approach for
2 routes; however, for Route 52, our model is surpassed. This
discrepancy can likely be attributed to the reduced variance in
our model’s predictions, as depicted in table V, suggesting a
more consistent performance across different scenarios. The
observed shortfall in performance for Route 52 may stem
from the limited data available for training our model, which
restricts its learning capacity and adaptability to the unique
patterns of this specific route. Moreover, our approach offers
additional advantages over the all-routes approach, allowing
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Fig. 5: Relative performance of ablation study models in terms
of weighted F̂1, ˆprecision, and ˆrecall against our GCN model
for Routes 3, 52, and 55. Positive values indicate metrics
where GCN outperforms the baseline methods.

transit agencies the flexibility to modify, add, or remove
routes without affecting the predictions for other routes. This
flexibility can extend to adjusting route patterns and scheduled
times, providing agencies with greater control and adaptability
in their operations.

VIII. CONCLUSION

We introduce an innovative Graph Neural Network frame-
work for the task of forecasting bus ridership in scenarios
where data distribution is highly imbalanced. Our framework
encapsulates the dynamic spatial interconnections inherent to
bus transit networks through the utilization of dynamic graphs.
A pivotal component of our approach is the adoption of focal
loss, which effectively addresses the issue of class imbalance.
Comparative analyses with state-of-the-art baselines, on real-
world bus transit data, demonstrate the superior predictive
power of our GCN model for stop level day ahead ridership
forecasting.
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